Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks.
نویسندگان
چکیده
We compared whisking movement patterns during acquisition of tactile detection and object discrimination under conditions in which (a) head movements are excluded and (b) exposure to tactile discriminanda is confined to the large, moveable vibrissae (macrovibrissae). We used optoelectronic instrumentation to track the movements of an individual whisker with high spatio-temporal resolution and a testing paradigm, which allowed us to dissociate performance on an "indicator" response (lever pressing) from the rat's "observing" responses (discriminative whisking). We analyzed the relation between discrimination performance and whisking movement patterns in order to clarify the process by which the indicator response comes under the stimulus control of information acquired by the rat's whisking behavior. Whisking patterns over the course of task acquisition differed with task demands. Acquisition of the Detection task was correlated with modulation of only one whisking movement parameter-total number of whisks emitted, and more whisking was seen on trials in which the discriminandum was absent. Discrimination between a sphere and cube differing in size and texture was correlated with a reduction in whisk duration and protraction amplitude and with a shift towards higher whisking frequencies. Our findings confirm previous reports that acquisition of tactile discriminations involves modulation by the animal of both the amount and the type of whisking. In contrast with a previous report (Brecht et al., 1997), they indicate that rats can solve tactile object detection and discrimination tasks (a) using only the large, motile mystacial vibrissae (macrovibrissae) and (b) without engaging in head movements. We conclude that the functional contribution of the macrovibrissae will vary with the nature of the task and the conditions of testing.
منابع مشابه
Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats.
A majority of whisker discrimination tasks in rodents are performed on head-fixed animals to facilitate tracking or control of the sensory inputs. However, head fixation critically restrains the behavior and thus the incoming stimuli compared with those occurring in natural conditions. In this study, we investigated whether freely behaving rats can discriminate fine tactile patterns while runni...
متن کاملNatural whisking. Focus on "variability in velocity profiles during free-air whisking behavior of unrestrained rats".
The rat whisker system is inherently an active sensory system (Mehta et al., 2007). The whiskers move through space to locate and palpate objects in the environment, varying amplitude, frequency and angular direction as they do so (Fee et al., 1997). The earliest studies by Welker (1964) described coordination between vibrissae, nose, head and sniffing movements. Importantly, Welker suggested t...
متن کاملCortical barrel field ablation and unconditioned whisking kinematics.
The effects of "barrel cortex" ablation upon the biometrics of "exploratory" whisking were examined in three head-fixed rats which had previously sustained unilateral ablation of the left cortical "barrel field" under electrophysiological control. Unconditioned movements of a pair of bilaterally homologous whiskers (C-1, Right, Left) were monitored, optoelectronically, with other whiskers prese...
متن کاملNatural whisker-guided behavior by head-fixed mice in tactile virtual reality.
During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, hea...
متن کاملNeocortical Dynamics During Whisker-Based Sensory Discrimination in Head-Restrained Mice
A fundamental task frequently encountered by brains is to rapidly and reliably discriminate between sensory stimuli of the same modality, be it distinct auditory sounds, odors, visual patterns, or tactile textures. A key mammalian brain structure involved in discrimination behavior is the neocortex. Sensory processing not only involves the respective primary sensory area, which is crucial for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Somatosensory & motor research
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2001